Engineering Mechanics

Portion 2
Introduction to Statics

Partha Kumar Das
Lecturer
Department of Mechanical Engineering, BUET http://teacher.buet.ac.bd/parthakdas/

Statics of Particle

Forces in a Plane Forces in a Space
(2D Analysis)
(3D Analysis)

## Forces in a Plane

Forces on a Particle

- Resolution of Forces into Components
- Rectangular Components
- Unit Vectors



## Forces in a Plane

Forces on a Particle

## - Equilibrium of a Particle



## Remember Newton

If the resultant force acting on a particle is zero, the particle will remain at rest (if originally at rest) or will move with constant speed in a straight line (if originally in motion).

## Forces in a Plane

Forces on a Particle

- Free Body Diagram of a Particle

Suppose 75 kg crate equivalent to 736 N weight is to be lifted using rope-pulleys.
We need to know whether the ropes can carry the load or not i.e. we need to determine the tension in the individual rope.

## Steps:

- Draw a Free Body Diagram of the most
significant point, here it is P .
- Resolve the components of the force or
use triangle rule to find out two
equations for the two unknown force

Free Bady Diagram is specially necessary in problem where a particle is in equilibrium condition.


Problem 2.2 (Beer Johnston_10 ${ }^{\text {hh }}$ edition_P2.62)
A movable bin and its contents have a combined weight of 2.8 kN . Determine the shortest chain sling $A C B$ that can be used to lift the loaded bin if the tension in the chain is not to exceed 5 kN .

Solution:
Free Body Diagram of Point C:


Ans.: $A C B=1.25 \mathrm{~m}$

## Problem 2.2 (Beer Johnston_10 ${ }^{\text {th }}$ edition_P2.53)

A sailor is being rescued using a boatswain's chair that is suspended from a pulley that can roll freely on the support cable ACB and is pulled at a constant speed by cable CD. Knowing that $\alpha=30^{\circ}, \beta=10^{\circ}$ and that the combined weight of the boatswain's chair and the sailor is 900 N , determine the tension (a) in the support cable ACB, (b) in the traction cable CD.


## Forces in a Space

Forces on a Particle
Force Determination from its Line of Action


Steps:
$\mathbf{M N}=d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}$
Unit Vector, $\lambda=\mathbf{M N} / M N=(d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}) / d$ $\mathbf{F}=F \lambda$

## Forces in a Space

Forces on a Particle

$\mathbf{F}=F x \mathbf{i}+F y \mathbf{j}+F z \mathbf{k}$
$F x=F \cos \theta x$
$F y=F \cos \theta y$
$F_{z}=F \cos \theta z$


## Problem 2.4 (Beer Johnston_10 ${ }^{\text {th }}$ edition_P2.77)

The end of the coaxial cable $A E$ is attached to the pole $A B$, which is strengthened by the guy wires $A C$ and $A D$. Knowing that the tension in wire $A C$ is 120 N , determine (a) the components of the force exerted by this wire on the pole, (b) the angles $\theta x, \theta y$, and $\theta z$ that the force forms with the coordinate axes.


Problem 2.5 (Beer Johnston_10 ${ }^{\text {ti }}$ edition_P2.102)
Three cables are used to tether a balloon as shown. Knowing that the balloon exerts an 800 N vertical force at $A$, determine the tension in each cable.

Solution:
Draw the Free Body Diagram of point $\mathbf{A}$.
Equilibrium Condition of A:

\[\)| $\boldsymbol{\Sigma} \mathbf{F}=\mathbf{0}$ |
| :--- |
|  So,  $\mathbf{T}_{A B}+\mathrm{T}_{\mathrm{Ac}}+\mathrm{T}_{\mathrm{AD}}+\mathbf{P}=\mathbf{0}$ |
| $\mathbf{A B}=-4.2 \mathbf{i}-5.6 \mathbf{j}$ |
| $\mathbf{A C}=2.4 \mathbf{i}-5.6 \mathbf{j}+4.2 \mathbf{k}$ |
| $\mathbf{A B}=-5.6 \mathbf{j}-3.3 \mathbf{k}$ |

\]



Ans.: $T_{A B}=201 \mathrm{~N}, T_{A C}=372 \mathrm{~N}, T_{A D}=416 \mathrm{~N}$


## Free Body Diagram



- Free Body Diagram of the Truck:




## Moment of a Force About a Point



$$
\begin{aligned}
& \mathbf{M}_{\mathbf{0}}=\mathbf{r} \times \mathbf{F}=\mathbf{r}_{N o} \times \mathbf{F} \\
& M_{o}=r F \sin \theta=F d
\end{aligned}
$$



## Moment of a Force About a Given Axis

- A scalar Quantity
- The projection of Moment on a given axis.
Moment of force about Point $\boldsymbol{O}$

$$
\mathbf{M o}=\mathbf{r}_{\text {no }} \times \mathbf{F}
$$

Moment of force about Axis $O L$ $M o c=\lambda . \mathrm{Mo}_{\mathrm{o}}$
$M O C=\lambda .\left(\mathbf{r}_{\text {no }} \mathbf{x} \mathbf{F}\right)$
$M o c=$
$\left|\begin{array}{lll}\lambda x & \lambda_{y} & \lambda_{z} \\ r_{x} & r_{y} & r_{z} \\ \mathrm{~F}_{\mathrm{x}} & \mathrm{F}_{\mathrm{y}} & \mathrm{F}_{\mathrm{z}}\end{array}\right|$

$\lambda$ is the unit vector along $O L$

Problem 2.10 (Beer Johnston_10 ${ }^{\text {th }}$ edition_P3.59)
The frame $A C D$ is hinged at $A$ and $D$ and is supported by a cable that passes through a ring at $B$ and is attached to hooks at $G$ and $H$. Knowing that the tension in the cable is 450 N , determine the moment about the diagonal $A D$ of the force exerted on the frame by portion $B H$ of the cable.

Solution:
Moment of force Triabout Point $A$

$$
\mathbf{M}_{\mathrm{A}}=\mathbf{r}_{\mathrm{B} / \mathrm{A}} \times \mathrm{T}_{\text {Bн }}
$$

Moment of force $\mathrm{T}_{\text {вн }}$ about $\mathbf{A x i s} \boldsymbol{A D}$ $M_{A D}=\lambda_{\mathrm{AD}} \cdot \mathrm{MA}_{\mathrm{A}}$
$\mathrm{AD}=\mathrm{i}-\mathbf{0 . 7 5 j}$
$A D=1.25$
$\lambda_{\mathrm{AD}}=(0.8 \mathbf{i}-0.6 \mathbf{k})$
$\mathbf{r}_{\mathrm{B} / \mathrm{A}}=0.5 \mathbf{i}$
$\mathbf{B H}=0.375 \mathbf{i}+0.75 \mathbf{j}-0.75 \mathbf{k}$
$B H=1.125 \mathrm{~m}$
$\lambda_{\mathrm{BH}}=(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}) / 3$
$\mathbf{T}_{\text {вн }}=150(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k})$
$M_{A D}=-90 \mathrm{Nm}$

Problem 2.11 (Beer Johnston_10 ${ }^{\text {in }}$ edition_P3.53)
A single force $\boldsymbol{P}$ acts at $C$ in a direction perpendicular to the handle $B C$ of the crank shown. Knowing that $M x=+20 \mathrm{Nm}$ and $M y=$ -8.75 N m , and $M z=-30 \mathrm{Nm}$. Determine the magnitude of $\boldsymbol{P}$ and the values of $\theta$ and $\phi$.


Ans.: $\mathbf{P}=125 \mathrm{~N}, \boldsymbol{\theta}=53.1^{\circ}, \boldsymbol{\phi}=73.7^{\circ}$



## References

$>$ Vector Mechanics for Engineers: Statics and Dynamics
Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.

## End of Portion 2

